Name: _____ Date: ____ Per: ___

Earthquakes

What are Earthquakes?

-The shaking or trembling caused by the sudden

-Usually associated with ______ or breaking of rocks

-Continuing adjustment of position results in _____

What is Elastic Rebound Theory?

Explains how energy is stored in rocks

- Rocks ______ until the strength of the rock is exceeded

- Rupture occurs and the rocks quickly rebound to a ______ shape

-Energy is released in ______ that radiate outward from the fault

The Focus and Epicenter of an Earthquake

-The point within Earth where faulting begins is the

-The point directly above the focus on the surface is the ______

At convergent boundaries, _____ increases along a dipping seismic zone called а

Rupture and release of energy

Rocks rebound to original undeformed shape

Seismographs measure and record earthquake events

Where do earthquakes occur and how often?

- -About ______ of all earthquakes occur in the circum-Pacific belt.
- -Most result from _____ margin activity.
- -About ______ occur in the Mediterranean-Asiatic belt .
- -remaining 5% occur in the interiors of plates and on _____

-more than ______ quakes strong enough to be felt are recorded each year

Economic and societal impacts of earthquakes

Ground Failure

What are seismic waves?

-A seismic wave is an elastic wave generated by an impulse such as an earthquake or an explosion -Two types:

Body Waves

Surface Waves

- Fastest wave

- Travels through solids, liquids and gases

- Compressional wave, material movement is in the same direction as wave movement

- Slower

- Only through solids
- Move material perpendicular to wave movement.

-Travel just below or along the ground's surface

-Slower than body waves; rolling and side-to-side movement. -Especially damaging to buildings

How is an Earthquake Epicenter Located?

_____ waves arrive first, then S waves, then L &R
By knowing the speeds of all these waves we can calculate distance by using the ______ in arrival times.

Time-distance graph showing the average travel times for P- and S-waves. The farther away a seismograph is from the focus of an earthquake, the longer the interval between the ______ of the P- and S- waves

• seismograph stations are needed to locate the epicenter of an earthquake

•A circle where the radius equals the distance to the is drawn •The of the circles locates the epicenter

How are size and strength of an earthquake measured?

Intensity

lines identify areas of equal intensity -subjective measure of the kind of damage done and reactions to it

Magnitude

–_____ measures total amount of energy released by an earthquake; independent of intensity.

-Amplitude of the largest wave produced by an event is corrected for distance and assigned a value on an open-ended ______

What are the Destructive Effects of Earthquakes?

Ground Shaking

-amplitude, duration, and damage increases in _____ consolidated rocks.

Can an Earthquake Be Predicted?

changes in elevation or tilting of land surface, fluctuations in groundwater levels, magnetic field, electrical resistance of the ground.

-include laboratory and field studies of rocks before, during, and after earthquakes.

-monitor activity along

-produce risk assessments.

Can Earthquakes Be Controlled?